Sorted by Huffman Code
Huffman coding is an entropy encoding algorithm used for lossless data compression.
The term refers to the use of a variable-length code table for encoding a source symbol (such as a character in a file) where the variable-length code table has been derived in a particular way based on the estimated probability of occurrence for each possible value of the source symbol. Entropy encoding is a lossless data compression scheme that is independent of the specific characteristics of the medium.

 

Char ASCII Huffman Char ASCII Huffman Char ASCII Huffman Char ASCII Huffman
space 32 10 F 70 11001100 ? 63 1100110101 { 123 110001101111100
e 101 011 B 66 11001111 = 61 1111000010 ` 96 110001101111101
n 110 0101 C 67 11110001 q 113 1111010110 ^ 94 110001101111110
i 105 1101 I 73 11110010 Q 81 1111010111 <US> 31 110001101111111
r 114 1110 T 84 11110100 j 106 00010100110 <GS> 29 111100001101100
t 116 00000 O 79 000101000 G 71 00010100111 <ESC> 27 111100001101101
s 115 00100 P 80 000101100 - 45 00010101111 <EM> 25 111100001101110
d 100 00111 1 49 001010000 : 58 00101000111 <CAN> 24 111100001101111
a 97 01000 R 82 110000010 ! 33 11110011101 <ETB> 23 111100001110000
u 117 11111 ( 40 110011011 / 47 11110011110 <SYN> 22 111100001110001
l 108 000010 ) 41 110011100 * 42 001010001100 <NAK> 21 111100001110010
h 104 000100 L 76 110011101 " 34 110001101100 <DC4> 20 111100001110011
9 103 000111 N 78 111100000 % 37 110001101101 <DC3> 19 111100001110100
m 109 001011 Z 90 111100110 ' 39 110001101110 <DC2> 18 111100001110101
<CR> 13 001100 M 77 111101010 _ 95 111100001100 <DC1> 17 111100001110110
<LF> 10 001101 9 57 0001010010 & 38 111100111001 <DLE> 16 111100001110111
o 111 010010 W 87 0001010100 + 43 111100111110 <RS> 30 111100001111000
c 99 010011 5 53 0001010101 > 62 111100111111 <SI> 15 111100001111001
b 98 0000110 Y 121 0001010110 @ 64 0001010111000 <SO> 14 111100001111010
f 102 0000111 2 50 0001011010 $ 36 0001010111001 <FF> 12 111100001111011
w 119 0001100 3 51 0001011011 < 60 0001010111010 <VT> 11 111100001111100
D 68 0001101 4 52 0001011100 X 88 0001010111011 <HT> 9 111100001111101
k 107 0010101 6 54 0001011101 # 35 0010100011011 <BS> 8 111100001111110
z 122 1100010 7 55 0001011110 Y 89 00101000110101 <BEL> 7 111100001111111
. 46 1100100 8 56 0001011111 ; 59 11110000110100 <ACK> 6 111100111000000
, 44 1100101 H 72 0010100010   92 11110000110101 <ENQ> 5 111100111000001
S 83 1111011 J 74 1100000110 [ 91 001010001101000 <EOT> 4 111100111000010
A 65 00101001 U 85 1100000111 ] 93 001010001101001 <ETX> 3 111100111000011
E 69 11000000 V 86 1100011000 <DEL> 127 110001101111000 <STX> 2 111100111000100
P 112 11000010 <FS> 28 1100011001 ~ 126 110001101111001 <SOH> 1 111100111000101
v 118 11000011 x 120 1100011010 } 125 110001101111010 <NUL> 0 111100111000110
0 48 11000111 K 75 1100110100   124 110001101111011 <SUB> 26 111100111000111